Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway.

نویسندگان

  • G Hu
  • S Zhang
  • M Vidal
  • J L Baer
  • T Xu
  • E R Fearon
چکیده

DCC (deleted in colorectal cancer) is postulated to function as transmembrane receptor for the axon and cell guidance factor netrin-1. We report here that the DCC cytoplasmic domain binds to proteins encoded by mammalian homologs of the Drosophila seven in absentia (sina) gene, as well as Drosophila Sina. Sina has a critical role in R7 photoreceptor development and shows upward of 85% amino acid identity with its mammalian homologs (termed Siahs), but the function of the Sina/Siah proteins has not been defined. We sought, therefore, to characterize further their interaction with DCC. Immunofluorescence studies suggested the Sina/Siah proteins localized predominantly in the cytoplasm and in association with DCC. DCC was found to be ubiquitinated and the Sina/Siah proteins regulated its expression. Proteasome inhibitors blocked the effects of Sina/Siah on DCC, and the Sina/Siah proteins interacted with ubiquitin-conjugating enzymes (Ubcs). A mutant Siah protein lacking the amino-terminal Ubc-binding sequences complexed with DCC, but did not degrade it. The in vivo interaction between Sina/Siah and DCC was confirmed through studies of transgenic Drosophila lines in which DCC and Sina were ectopically expressed in the eye. Taken together, the data imply that the Sina/Siah proteins regulate DCC and perhaps other proteins via the ubiquitin-proteasome pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins.

The Drosophila seven in absentia (sina) gene was initially discovered because its inactivation leads to R7 photoreceptor defects. Recent data indicate that Sina binds to the Sevenless pathway protein Phyllopod, and together they mediate degradation of Tramtrack, a transcriptional repressor of R7 cell fate. Independent studies have shown that Sina and its highly related mammalian homologues Siah...

متن کامل

Seven in Absentia E3 Ubiquitin Ligases: Central Regulators of Neural Cell Fate and Neuronal Polarity

During neural development, neural precursors transition from a proliferative state within their germinal niches to a migratory state as they relocate to their final laminar positions. Transitions across these states are coupled with dynamic alterations in cellular polarity. This key feature can be seen throughout the developing vertebrate brain, in which neural stem cells give rise to multipola...

متن کامل

A Ubiquitin-Proteasome Pathway Represses the Drosophila Immune Deficiency Signaling Cascade

BACKGROUND The inducible production of antimicrobial peptides is a major immune response in Drosophila. The genes encoding these peptides are activated by NF-kappaB transcription factors that are controlled by two independent signaling cascades: the Toll pathway that regulates the NF-kappaB homologs, Dorsal and DIF; and the IMD pathway that regulates the compound NF-kappaB-like protein, Relish....

متن کامل

A HECT domain ubiquitin ligase closely related to the mammalian protein WWP1 is essential for Caenorhabditis elegans embryogenesis.

The highly conserved ubiquitin/proteasome pathway controls the degradation of many critical regulatory proteins. Proteins are posttranslationally conjugated to ubiquitin through a concerted set of reactions involving activating (E1), conjugating (E2), and ligase (E3) enzymes. Ubiquitination targets proteins for proteolysis via the proteasome and may regulate protein function independent of prot...

متن کامل

Involvement of the ubiquitin-proteasome pathway in the degradation of nontyrosine kinase-type cytokine receptors of IL-9, IL-2, and erythropoietin.

The ubiquitin-dependent proteasome-mediated (Ub-Pr) degradation pathway has been shown to regulate a large variety of substrates, including nuclear, cytosolic, and membrane proteins. In mammalian systems, polyubiquitin modification has been identified in a number of cell surface receptors for more than a decade; however, its biological significance has remained unclear until recently. For growt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 11 20  شماره 

صفحات  -

تاریخ انتشار 1997